/* xash3d_mathlib.c - internal mathlib Copyright (C) 2010 Uncle Mike This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. */ #include "port.h" #include "xash3d_types.h" #include "const.h" #include "com_model.h" #include "xash3d_mathlib.h" #include "eiface.h" #include "studio.h" #define NUM_HULL_ROUNDS ARRAYSIZE( hull_table ) #define HULL_PRECISION 4 static const word hull_table[] = { 2, 4, 6, 8, 12, 16, 18, 24, 28, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 112, 120, 128, 140, 176 }; const int boxpnt[6][4] = { { 0, 4, 6, 2 }, // +X { 0, 1, 5, 4 }, // +Y { 0, 2, 3, 1 }, // +Z { 7, 5, 1, 3 }, // -X { 7, 3, 2, 6 }, // -Y { 7, 6, 4, 5 }, // -Z }; // pre-quantized table normals from Quake1 const float m_bytenormals[NUMVERTEXNORMALS][3] = { #include "anorms.h" }; uint16_t FloatToHalf( float v ) { unsigned int i = FloatAsUint( v ); unsigned int e = (i >> 23) & 0x00ff; unsigned int m = i & 0x007fffff; unsigned short h; if( e <= 127 - 15 ) h = ((m | 0x00800000) >> (127 - 14 - e)) >> 13; else h = (i >> 13) & 0x3fff; h |= (i >> 16) & 0xc000; return h; } float HalfToFloat( uint16_t h ) { unsigned int f = (h << 16) & 0x80000000; unsigned int em = h & 0x7fff; if( em > 0x03ff ) { f |= (em << 13) + ((127 - 15) << 23); } else { unsigned int m = em & 0x03ff; if( m != 0 ) { unsigned int e = (em >> 10) & 0x1f; while(( m & 0x0400 ) == 0 ) { m <<= 1; e--; } m &= 0x3ff; f |= ((e + (127 - 14)) << 23) | (m << 13); } } return UintAsFloat( f ); } /* ================= RoundUpHullSize round the hullsize to nearest 'right' value ================= */ void RoundUpHullSize( vec3_t size ) { int i, j; for( i = 0; i < 3; i++) { qboolean negative = false; float result, value; value = size[i]; if( value < 0.0f ) negative = true; value = Q_ceil( fabs( value )); result = Q_ceil( size[i] ); // lookup hull table to find nearest supposed value for( j = 0; j < NUM_HULL_ROUNDS; j++ ) { if( value > hull_table[j] ) continue; // ceil only if( negative ) { result = ( value - hull_table[j] ); if( result <= HULL_PRECISION ) { result = -hull_table[j]; break; } } else { result = ( value - hull_table[j] ); if( result <= HULL_PRECISION ) { result = hull_table[j]; break; } } } size[i] = result; } } /* ================= rsqrt ================= */ float rsqrt( float number ) { int i; float x, y; if( number == 0.0f ) return 0.0f; x = number * 0.5f; i = FloatAsInt( number ); // evil floating point bit level hacking i = 0x5f3759df - (i >> 1); // what the fuck? y = IntAsFloat( i ); y = y * (1.5f - (x * y * y)); // first iteration return y; } void VectorVectors( const vec3_t forward, vec3_t right, vec3_t up ) { float d; right[0] = forward[2]; right[1] = -forward[0]; right[2] = forward[1]; d = DotProduct( forward, right ); VectorMA( right, -d, forward, right ); VectorNormalize( right ); CrossProduct( right, forward, up ); VectorNormalize( up ); } /* ================= VectorAngles ================= */ void GAME_EXPORT VectorAngles( const float *forward, float *angles ) { float tmp, yaw, pitch; if( !forward || !angles ) { if( angles ) VectorClear( angles ); return; } if( forward[1] == 0 && forward[0] == 0 ) { // fast case yaw = 0; if( forward[2] > 0 ) pitch = 90.0f; else pitch = 270.0f; } else { yaw = ( atan2( forward[1], forward[0] ) * 180 / M_PI_F ); if( yaw < 0 ) yaw += 360; tmp = sqrt( forward[0] * forward[0] + forward[1] * forward[1] ); pitch = ( atan2( forward[2], tmp ) * 180 / M_PI_F ); if( pitch < 0 ) pitch += 360; } VectorSet( angles, pitch, yaw, 0 ); } /* ================= VectorsAngles ================= */ void VectorsAngles( const vec3_t forward, const vec3_t right, const vec3_t up, vec3_t angles ) { float pitch, cpitch, yaw, roll; pitch = -asin( forward[2] ); cpitch = cos( pitch ); if( fabs( cpitch ) > EQUAL_EPSILON ) // gimball lock? { cpitch = 1.0f / cpitch; pitch = RAD2DEG( pitch ); yaw = RAD2DEG( atan2( forward[1] * cpitch, forward[0] * cpitch )); roll = RAD2DEG( atan2( -right[2] * cpitch, up[2] * cpitch )); } else { pitch = forward[2] > 0 ? -90.0f : 90.0f; yaw = RAD2DEG( atan2( right[0], -right[1] )); roll = 180.0f; } angles[PITCH] = pitch; angles[YAW] = yaw; angles[ROLL] = roll; } // // bounds operations // /* ================= SphereIntersect ================= */ qboolean SphereIntersect( const vec3_t vSphereCenter, float fSphereRadiusSquared, const vec3_t vLinePt, const vec3_t vLineDir ) { float a, b, c, insideSqr; vec3_t p; // translate sphere to origin. VectorSubtract( vLinePt, vSphereCenter, p ); a = DotProduct( vLineDir, vLineDir ); b = 2.0f * DotProduct( p, vLineDir ); c = DotProduct( p, p ) - fSphereRadiusSquared; insideSqr = b * b - 4.0f * a * c; if( insideSqr <= 0.000001f ) return false; return true; } /* ================= PlaneIntersect find point where ray was intersect with plane ================= */ void PlaneIntersect( const mplane_t *plane, const vec3_t p0, const vec3_t p1, vec3_t out ) { float distToPlane = PlaneDiff( p0, plane ); float planeDotRay = DotProduct( plane->normal, p1 ); float sect = -(distToPlane) / planeDotRay; VectorMA( p0, sect, p1, out ); } // // studio utils // /* ==================== QuaternionAlign make sure quaternions are within 180 degrees of one another, if not, reverse q ==================== */ static void QuaternionAlign( const vec4_t p, const vec4_t q, vec4_t qt ) { // decide if one of the quaternions is backwards float a = 0.0f; float b = 0.0f; int i; for( i = 0; i < 4; i++ ) { a += (p[i] - q[i]) * (p[i] - q[i]); b += (p[i] + q[i]) * (p[i] + q[i]); } if( a > b ) { for( i = 0; i < 4; i++ ) qt[i] = -q[i]; } else { for( i = 0; i < 4; i++ ) qt[i] = q[i]; } } /* ==================== QuaternionSlerpNoAlign ==================== */ static void QuaternionSlerpNoAlign( const vec4_t p, const vec4_t q, float t, vec4_t qt ) { float omega, cosom, sinom, sclp, sclq; int i; // 0.0 returns p, 1.0 return q. cosom = p[0] * q[0] + p[1] * q[1] + p[2] * q[2] + p[3] * q[3]; if(( 1.0f + cosom ) > 0.000001f ) { if(( 1.0f - cosom ) > 0.000001f ) { omega = acos( cosom ); sinom = sin( omega ); sclp = sin( (1.0f - t) * omega) / sinom; sclq = sin( t * omega ) / sinom; } else { sclp = 1.0f - t; sclq = t; } for( i = 0; i < 4; i++ ) { qt[i] = sclp * p[i] + sclq * q[i]; } } else { qt[0] = -q[1]; qt[1] = q[0]; qt[2] = -q[3]; qt[3] = q[2]; sclp = sin(( 1.0f - t ) * ( 0.5f * M_PI_F )); sclq = sin( t * ( 0.5f * M_PI_F )); for( i = 0; i < 3; i++ ) { qt[i] = sclp * p[i] + sclq * qt[i]; } } } /* ==================== QuaternionSlerp Quaternion sphereical linear interpolation ==================== */ void QuaternionSlerp( const vec4_t p, const vec4_t q, float t, vec4_t qt ) { vec4_t q2; // 0.0 returns p, 1.0 return q. // decide if one of the quaternions is backwards QuaternionAlign( p, q, q2 ); QuaternionSlerpNoAlign( p, q2, t, qt ); } /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 ================== */ int BoxOnPlaneSide( const vec3_t emins, const vec3_t emaxs, const mplane_t *p ) { float dist1, dist2; int sides = 0; // general case switch( p->signbits ) { case 0: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 1: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 2: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 3: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 4: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 5: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 6: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; case 7: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; default: // shut up compiler dist1 = dist2 = 0; break; } if( dist1 >= p->dist ) sides = 1; if( dist2 < p->dist ) sides |= 2; return sides; } void R_StudioCalcBones( int frame, float s, const mstudiobone_t *pbone, const mstudioanim_t *panim, const float *adj, vec3_t pos, vec4_t q ) { float v1[6], v2[6]; int i, max; max = q != NULL ? 6 : 3; for( i = 0; i < max; i++ ) { mstudioanimvalue_t *panimvalue = (mstudioanimvalue_t *)((byte *)panim + panim->offset[i] ); int j = frame; float fadj = 0.0f; if( pbone->bonecontroller[i] >= 0 && adj != NULL ) fadj = adj[pbone->bonecontroller[i]]; if( panim->offset[i] == 0 ) { v1[i] = v2[i] = pbone->value[i] + fadj; continue; } if( panimvalue->num.total < panimvalue->num.valid ) j = 0; while( panimvalue->num.total <= j ) { j -= panimvalue->num.total; panimvalue += panimvalue->num.valid + 1; if( panimvalue->num.total < panimvalue->num.valid ) j = 0; } if( panimvalue->num.valid > j ) { v1[i] = panimvalue[j + 1].value; if( panimvalue->num.valid > j + 1 ) v2[i] = panimvalue[j + 2].value; else if( panimvalue->num.total > j + 1 ) v2[i] = v1[i]; else v2[i] = panimvalue[panimvalue->num.valid + 2].value; } else { v1[i] = panimvalue[panimvalue->num.valid].value; if( panimvalue->num.total > j + 1 ) v2[i] = v1[i]; else v2[i] = panimvalue[panimvalue->num.valid + 2].value; } v1[i] = pbone->value[i] + v1[i] * pbone->scale[i] + fadj; v2[i] = pbone->value[i] + v2[i] * pbone->scale[i] + fadj; } if( !VectorCompare( v1, v2 )) VectorLerp( v1, s, v2, pos ); else VectorCopy( v1, pos ); if( q != NULL ) { if( !VectorCompare( &v1[3], &v2[3] )) { vec4_t q1, q2; AngleQuaternion( &v1[3], q1, true ); AngleQuaternion( &v2[3], q2, true ); QuaternionSlerp( q1, q2, s, q ); } else { AngleQuaternion( &v1[3], q, true ); } } }