Xrasher/3rdparty/MultiEmulator/src/CRijndael.h
Alibek Omarov ae2ad6ddf2 3rdparty: add MultiEmulator by 2010kohtep
* patched to be portable, turned into a static library
* integrated to the engine
2024-10-21 06:19:11 +03:00

187 lines
5.9 KiB
C++

#ifndef __RIJNDAEL_H__
#define __RIJNDAEL_H__
#include <exception>
#include <stdexcept>
#include <cstring>
#include <string>
using namespace std;
//Rijndael (pronounced Reindaal) is a block cipher, designed by Joan Daemen and Vincent Rijmen as a candidate algorithm for the AES.
//The cipher has a variable block length and key length. The authors currently specify how to use keys with a length
//of 128, 192, or 256 bits to encrypt blocks with al length of 128, 192 or 256 bits (all nine combinations of
//key length and block length are possible). Both block length and key length can be extended very easily to
// multiples of 32 bits.
//Rijndael can be implemented very efficiently on a wide range of processors and in hardware.
//This implementation is based on the Java Implementation used with the Cryptix toolkit found at:
//http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndael.zip
//Java code authors: Raif S. Naffah, Paulo S. L. M. Barreto
//This Implementation was tested against KAT test published by the authors of the method and the
//results were identical.
class CRijndael
{
public:
//Operation Modes
//The Electronic Code Book (ECB), Cipher Block Chaining (CBC) and Cipher Feedback Block (CFB) modes
//are implemented.
//In ECB mode if the same block is encrypted twice with the same key, the resulting
//ciphertext blocks are the same.
//In CBC Mode a ciphertext block is obtained by first xoring the
//plaintext block with the previous ciphertext block, and encrypting the resulting value.
//In CFB mode a ciphertext block is obtained by encrypting the previous ciphertext block
//and xoring the resulting value with the plaintext.
enum { ECB = 0, CBC = 1, CFB = 2 };
private:
enum { DEFAULT_BLOCK_SIZE = 16 };
enum { MAX_BLOCK_SIZE = 32, MAX_ROUNDS = 14, MAX_KC = 8, MAX_BC = 8 };
//Auxiliary Functions
//Multiply two elements of GF(2^m)
static int Mul(int a, int b)
{
return (a != 0 && b != 0) ? sm_alog[(sm_log[a & 0xFF] + sm_log[b & 0xFF]) % 255] : 0;
}
//Convenience method used in generating Transposition Boxes
static int Mul4(int a, char b[])
{
if (a == 0)
return 0;
a = sm_log[a & 0xFF];
int a0 = (b[0] != 0) ? sm_alog[(a + sm_log[b[0] & 0xFF]) % 255] & 0xFF : 0;
int a1 = (b[1] != 0) ? sm_alog[(a + sm_log[b[1] & 0xFF]) % 255] & 0xFF : 0;
int a2 = (b[2] != 0) ? sm_alog[(a + sm_log[b[2] & 0xFF]) % 255] & 0xFF : 0;
int a3 = (b[3] != 0) ? sm_alog[(a + sm_log[b[3] & 0xFF]) % 255] & 0xFF : 0;
return a0 << 24 | a1 << 16 | a2 << 8 | a3;
}
public:
//CONSTRUCTOR
CRijndael();
//DESTRUCTOR
virtual ~CRijndael();
//Expand a user-supplied key material into a session key.
// key - The 128/192/256-bit user-key to use.
// chain - initial chain block for CBC and CFB modes.
// keylength - 16, 24 or 32 bytes
// blockSize - The block size in bytes of this Rijndael (16, 24 or 32 bytes).
void MakeKey(char const* key, char const* chain, int keylength = DEFAULT_BLOCK_SIZE, int blockSize = DEFAULT_BLOCK_SIZE);
private:
//Auxiliary Function
void Xor(char* buff, char const* chain)
{
if (false == m_bKeyInit)
throw runtime_error(sm_szErrorMsg1);
for (int i = 0; i<m_blockSize; i++)
*(buff++) ^= *(chain++);
}
//Convenience method to encrypt exactly one block of plaintext, assuming
//Rijndael's default block size (128-bit).
// in - The plaintext
// result - The ciphertext generated from a plaintext using the key
void DefEncryptBlock(char const* in, char* result);
//Convenience method to decrypt exactly one block of plaintext, assuming
//Rijndael's default block size (128-bit).
// in - The ciphertext.
// result - The plaintext generated from a ciphertext using the session key.
void DefDecryptBlock(char const* in, char* result);
public:
//Encrypt exactly one block of plaintext.
// in - The plaintext.
// result - The ciphertext generated from a plaintext using the key.
void EncryptBlock(char const* in, char* result);
//Decrypt exactly one block of ciphertext.
// in - The ciphertext.
// result - The plaintext generated from a ciphertext using the session key.
void DecryptBlock(char const* in, char* result);
void Encrypt(char const* in, char* result, size_t n, int iMode = ECB);
void Decrypt(char const* in, char* result, size_t n, int iMode = ECB);
//Get Key Length
int GetKeyLength()
{
if (false == m_bKeyInit)
throw runtime_error(sm_szErrorMsg1);
return m_keylength;
}
//Block Size
int GetBlockSize()
{
if (false == m_bKeyInit)
throw runtime_error(sm_szErrorMsg1);
return m_blockSize;
}
//Number of Rounds
int GetRounds()
{
if (false == m_bKeyInit)
throw runtime_error(sm_szErrorMsg1);
return m_iROUNDS;
}
void ResetChain()
{
memcpy(m_chain, m_chain0, m_blockSize);
}
public:
//Null chain
static char const* sm_chain0;
private:
static const int sm_alog[256];
static const int sm_log[256];
static const signed char sm_S[256];
static const signed char sm_Si[256];
static const int sm_T1[256];
static const int sm_T2[256];
static const int sm_T3[256];
static const int sm_T4[256];
static const int sm_T5[256];
static const int sm_T6[256];
static const int sm_T7[256];
static const int sm_T8[256];
static const int sm_U1[256];
static const int sm_U2[256];
static const int sm_U3[256];
static const int sm_U4[256];
static const signed char sm_rcon[30];
static const int sm_shifts[3][4][2];
//Error Messages
static char const* sm_szErrorMsg1;
static char const* sm_szErrorMsg2;
//Key Initialization Flag
bool m_bKeyInit;
//Encryption (m_Ke) round key
int m_Ke[MAX_ROUNDS + 1][MAX_BC];
//Decryption (m_Kd) round key
int m_Kd[MAX_ROUNDS + 1][MAX_BC];
//Key Length
int m_keylength;
//Block Size
int m_blockSize;
//Number of Rounds
int m_iROUNDS;
//Chain Block
char m_chain0[MAX_BLOCK_SIZE];
char m_chain[MAX_BLOCK_SIZE];
//Auxiliary private use buffers
int tk[MAX_KC];
int a[MAX_BC];
int t[MAX_BC];
};
#endif // __RIJNDAEL_H__